$\pi^0 v_2$ analysis in $\sqrt{s_{NN}} = 200 \text{GeV}$ Au+Au collisions

KANETA, Masashi

for the PHENIX Collaboration

RIKEN-BNL Research Center

Why Event Anisotropy?

・ できょう できょう できょう でんしゅう かくりゅう かんりゅう かんりゅう しゅうしゅう しゅうしゅう かんりゅう かんりゅう かんりゅう かんりゅう かんりゅう かんりゅう かんりゅう しゅうしゅう しゅうしゅう しゅうしゅう

- Because of sensitive to collision geometry
 - In low p_T (\sim <2 GeV/c)
 - Pressure gradient of early stage
 - Hydrodynamical picture is established
 - In high p_T (>~2 GeV/c)
 - Energy loss in dense medium (Jet Quenching)
 - Partonic flow(?)

Here we focus on ellipticity of azimuthal momentum distribution, v₂ (second Fourier coefficient)

Method of $\pi^0 v_2$ Measurement

- Define reaction plane by charged multiplicity on Beam-Beam Counters
- π^0 reconstruction from gamma measured by Electro-Magnetic Calorimeter (EMC)
 - For each p_T , azimuthal angle, centrality
- Combine both information
 - Counting number of π^0 as a function of

$$E\frac{dN^{3}}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T} dp_{T} dy} \left(1 + \sum_{n=1}^{\infty} 2 \frac{v_{n}^{measured}}{v_{n}^{measured}} \cos[n(\phi - \Psi_{r})]\right)$$
event anisotropy parameter measured
azimuthal angle of the particle

$$v_n^{real} = v_n^{measured} / (reaction plane resolution)_n$$

Note: the detail of reaction plane definition will be found in nucl-ex/0305013

PHENIX experiment

<u>ಾಕ್ಕಾರ್ಡಕ್ಕಾರಕ ಪ್ರಕರ್ಷಕ್ಕೆ ಪ್ರಾಕ್ಷಿಸಿದ್ದರೆಗೆ ಬರಿಕೆಗಿದ್ದರೆಗೆ ಬರ್</u>ಕ್ಕಾರಕ ಸಿದ್ದರೆಗೆ ಬರ್ಕ್ಗೆ ಬರೆಗೆ ಬರ್ಕ್ಗೆ ಬರೆಗೆ ಬರೆಗೆ ಬರ್ಕ್ಗೆ ಬರೆಗೆ ಬರ್ಕ್ಗೆ ಬರ್ಕೆ ಬರೆಗೆ ಬರ್ಕ್ಗೆ ಬರೆಗೆ ಬರೆಗೆ ಬರ್ಕ್ಗೆ ಬರ್ಕೆ ಬರೆಗೆ ಬರೆಗೆ ಬರೆಗೆ ಬರ್ಕೆ ಬರೆಗೆ ಬರೆಗೆ ಬ

- Lead Scintillator and Lead Glass EMCs
 - Gamma measurement $(\pi^0 \rightarrow \gamma \gamma)$
- BBCs and ZDCs
 - Collision centrality determination
- BBCs
 - Reaction plane determination and
 - Its resolution correction

Example plots from the analysis procedure

それないのからのかからかからかからかからかからかんしゃ

Invariant mass of γγ from same event and mixed event (classed by reaction plane, centrality, vertex position)

Tooooooooooo many histograms checked

Example of invariant mass distributions for each p_T , ϕ - Φ_R in a centrality bin

V₂ vs. p_⊤ vs. Centrality from 200GeV Au+Au

<u>෦ඁ</u>෬෭෧ඁ෯෮෧ඁ෯෮෧ඁ෯෮෧ඁ෯෮෧෯෧෮෯෧෮෯෧෮෯෧ඁ

Statistical error is shown by error bar Systematic error from π^0 count method and reaction plane determination is shown by gray box

V₂ vs. p_T vs. Centrality from 200GeV Au+Au

<u>එටණීමටණීමටණීමටණීමටණීමටණීමටණීමටණීමටණීම</u>

Statistical error is shown by error bar Systematic error from π^0 count method and reaction plane determination is shown by gray box

The charged π and $K v_2$ are shown only with statistical errors

• Charged $\pi + K v_2$ consistent with $\pi^0 v_2$ in $p_T < 4 GeV/c$

V₂ vs. p_T (Minimum Bias) from 200GeV Au+Au

Identified particle v₂ up to p_T=10GeV/c

V₂ vs. p_T (Minimum Bias) from 200GeV Au+Au

・ またしまり ロック ロックル ロックル ロックル ロックル ロックル ロックル ロックル

Identified particle v₂ up to p_T=10GeV/c

V₂ vs. p_T (Minimum Bias) from 200GeV Au+Au

Identified particle v₂ up to p_T=10GeV/c

Comparison with K_s^0 and Λ (STAR)

STAR data from nucl-ex/0306008

Comparison with a model

Comparison with a model which is described in nucl-th/0306027. Here we don't want to discuss which model can describe the data. To conclude which model can describe the data, we need much more statistics in high p_T region.

<u>෦</u>෦෮෫ඁ෧෮෫ඁ෧෮෫ඁ෧෮෫ඁ෧෮෫෧෮෫෧෮෫෧෮෫෧෮෫෧෮෫෧

- First measurement of $\pi^0 v_2$ at RHIC
 - In p_T =1-10 GeV/c
- Charged $\pi + K v_2$ consistent with $\pi^0 v_2$
 - In p_T =1-4GeV/c
- Minimum bias data shows finite π^0 v_2
 - Up to $p_T \sim 8 \text{ GeV/c}$
- RHIC run4 Au+Au, it will be
 - Much more statistics
 - Detail study of v_2 shape around p_T =2-4GeV/c
 - Much higher p_T
 - We want to know where is end of finite v_2 in very high p_T

Reaction plane resolution

<u>෦ඁඁ෬෯෯෬෯ඁ෧෬෯෧෬෯෧෬෯෧෬෯෧෬෯෧෬෯෧෬෯෧</u>

This values are used to correct measured v₂